#### **Towards an Optics Design for the SKA**

Isak Theron EMSS Antennas iptheron@emss.co.za

#### **Robert Lehmensiek**

EMSS Antennas lehmensk@ieee.org

#### Dirk de Villiers

Stellenbosch University ddv@sun.ac.za



Science and technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA











#### Outline



- Introduction to SKA
- Optics requirements
- Optics design process and selection
- Example analysis
- Conclusion





AFRICON 2013

### Background



- SKA will be world's largest radio telescope
  - Interferometer with receiving aperture of 1 km<sup>2</sup>
- Key science projects:
  - Probing the "dark ages" / Epoch of Reionization
    - Observing highly red shifted neutral hydrogen (21cm)
  - Strong field tests of gravity
    - Testing general relativity
    - High precision pulsar timing observations
  - Galaxy evolution, cosmology and dark energy
    - How do stars form?
    - Conducting both wide and deep surveys
  - Origin and evolution of cosmic magnetism
  - Search for exoplanets ("cradle of life")
    - Imaging nearby objects



#### Background



- SKA needs to be very general
  - Different requirements for the key science
  - "Exploration of the unknown"
    - Outstanding questions of SKA era currently unknown
- SKA baseline design (March 2013)
  - SKA1-mid (MeerKAT as precursor)
    - 64x13.5m MeerKAT & 190x15m SKA1 dishes
  - SKA1-survey (ASKAP as precursor)
    - 32x12m ASKAP & 60x15m SKA1 dishes
  - SKA1-low
    - ≈ 250 000 Log-P's



# Background: Dish Requirement

- SKA baseline prescribes:
  - Offset Gregorian dual reflector system
  - Aperture diameter,  $D_m$ , is 15 m
- Ideally same dish both dish arrays



# Background: Frequency bands

- SKA1-mid: Five single pixel feeds:
  - Band 1: 350 1050 MHz (3:1)
  - Band 2: 950 1760 MHz (1.85:1)
  - Band 3: 1.65 3.05 GHz (1.85:1)
  - Band 4: 2.8 5.18 GHz (1.85:1)
  - Band 5: 4.6 13.8 GHz (3:1)
- SKA1-survey: Three wide FoV feeds (PAFs):
  - Band 1: 350 900 MHz (2.57:1)
  - Band 2: 650 1670 MHz (2.57:1)
  - Band 3: 1.5 4 GHz (2.67:1)
- Future upgrades: wideband feeds (10:1)

6

#### Feeds



- Wide variety of feeds
  - Different ideal beam widths
- Some can be optimised for wider range of beam widths
- Conflicting requirements: e.g.
  - Pulsar research need maximum boresight gain with less regard to SLLs
  - Wide-field imaging requires stable beams with low SLLs rather than absolute sensitivity



# **Optics** Design



- How to design the optics "for everything"
  - Choose a number of possible dish designs
  - Optimise as many feeds as possible for each of these
- Determine performance criteria

   Outside the scope of this presentation
- Do a trade-off study between
  - System's possible EM performance
  - Mechanical complexity / cost





- Offset Gregorian Geometry

   Defined by 6 parameters
- Mizugutch condition for optimal cross-pol – Reduce to 5 parameters
- Projected diameter is fixed
   Left with 4 parameters
- Sets proposed by Christophe Granet



#### **Dish Geometry**





| D <sub>m</sub> | Main reflector diameter, projected in direction of main beam.                                              |  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| θ₀             | Offset angle of the centre of the main reflector, linked to h.                                             |  |  |  |  |  |  |
| L <sub>s</sub> | Distance from the angular centre of the sub-reflector (relative to the feed point) to the secondary focus. |  |  |  |  |  |  |
| θ <sub>e</sub> | Half the angular width of the sub-reflector as measured from the feed.                                     |  |  |  |  |  |  |
| β              | Angle between the optical axis and sub-reflector foci axis.                                                |  |  |  |  |  |  |
| EMSS           | AFRICON 2013                                                                                               |  |  |  |  |  |  |



- $D_m$  and  $\theta_e$  prescribed
- Rest determined in terms of model size
  - Sub-reflector "size"  $\| P_1 P_2 \|$
  - Main reflector "size"  $\| Q_1 Q_2 \|$
  - Clearance  $\|\mathbf{x}_{P1}\mathbf{x}_{P2}\|$
- Iterative determination

 $-\theta_0, \beta, L_s$ 





- Select the basic parameter sets
- Feed half angle
  - Main differentiator between feeds
  - Larger feed angles start to cause blockage
  - Little mechanical impact for a given main reflector
  - Wideband & PAFs favour larger  $\theta_e$
  - Octave band horn feeds favour smaller  $\theta_e$
  - $-\theta_e = [58^\circ, 53^\circ, 49^\circ]$ , i.e.  $F_e/d \approx [0.45, 0.5, 0.55]$



- Sub-reflector size
  - Larger is better for EM performance at low frequency
  - Smaller is preferred from mechanical considerations
  - $\| P_1 P_2 \| = [4, 5, 6] m$
- Main reflector size (depth)
  - Very little EM impact
  - Mechanical trade between reflector size and feed boom length
  - $\|Q_1Q_2\| = 18.2 \text{ m from existing mechanical trades}$
- Offset angle
  - Little influence on dish performance
  - Selected  $\theta_0 = -69^\circ$  to make  $||x_{P1}x_{P2}|| \approx 0.5$  m
  - Implies MR size is the same



# Tipping

A LA





# Tipping







#### AFRICON 2013

## **Shielding Spillover**

- Extend SR (or MR) to shield spillover
- Less expensive for feed-down (SR extended) tipping





#### **SR** Extension



- Extension only considered for feed down
- Extension angle,  $\chi = 20^{\circ}$ ; from MeerKAT





TABLE I.Parameters for the Unshaped Dish Candidates for<br/>Cases Without ( $\chi = 0^{\circ}$ ) and With ( $\chi = 20^{\circ}$ ) a Sub-Reflector Extension.

| Approximate              | Requirements                                                                                                                        | Primary Parameters                 |      |                                   |                                        |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|-----------------------------------|----------------------------------------|
| $Q_1Q_2 \approx 18.2m_z$ | $D_m = 15 \text{ m}; \theta_0 = -69^\circ$                                                                                          |                                    |      |                                   |                                        |
| $\approx F_e/D$          | $\approx \left\  \mathbf{P}_{1}\mathbf{P}_{2} \right\  \text{ (or } \\ \left\  \mathbf{P}_{1}\mathbf{P}_{3} \right\  \text{ ) [m]}$ | $	heta_{e} \left[ ^{\circ}  ight]$ | β[°] | $L_s [m]$ for<br>$\chi = 0^\circ$ | $L_{s} [m]$ for<br>$\chi = 20^{\circ}$ |
|                          | 4                                                                                                                                   | 58 57.6                            |      | 2.154                             | 2.004                                  |
| 0.45                     | 5                                                                                                                                   |                                    | 57.6 | 2.694                             | 2.506                                  |
|                          | 6                                                                                                                                   |                                    |      | 3.234                             | 3.009                                  |
|                          | 4                                                                                                                                   | 53                                 | 48.8 | 2.342                             | 2.155                                  |
| 0.5                      | 5                                                                                                                                   |                                    |      | 2.929                             | 2.695                                  |
|                          | 6                                                                                                                                   |                                    |      | 3.516                             | 3.236                                  |
|                          | 4                                                                                                                                   | 49                                 | 41.7 | 2.517                             | 2.292                                  |
| 0.55                     | 5                                                                                                                                   |                                    |      | 3.148                             | 2.866                                  |
|                          | 6                                                                                                                                   |                                    |      | 3.779                             | 3.441                                  |



AFRICON 2013

# Shaping Dish



- Shaping allows control over the aperture distribution
- Can improve efficiency while controlling sidelobes
- Can also reduce far sidelobes
  - Use lower edge illumination
  - Act as an "extension"
- Need pattern
- Significantly increases the parameter space

### **Design Process**



- First, determine "best" unshaped dish
  - Comparison of different designs
    - EM performance of all feeds
    - Mechanical complexity / cost
  - Outcome: unshaped dish design and a set of feeds for this dish design
- Second, determine shaped dish
  - Determine EM performance improvement with a shaped dish using the optimised feeds
- Final selection



**EM** Analyses

- Illustrative example of EM analyses
- Band 2
- Dish:
  - $D_m = 15 \text{ m}, \ \theta_0 = -69^\circ, \ \theta_e = 49^\circ, \ \beta = 41.7^\circ$
  - without extension,  $L_s = 3.148$  m
  - with extension,  $L_s = 2.866$  m
- Feed: scaled MeerKAT horn





#### Example 1:





SKA\_U\_TE3\_SR2\_MR1\_EX0:  $D_m = 15 m, \theta_0 = -69^\circ, \theta_e = 49^\circ (F_{eq}/D = 0.54857), \beta = 41.7^\circ, L_s = 3.148 m$ 

#### Example 2:





#### **Aperture Efficiency**



# Maximum Sidelobes



# Maximum Sidelobes



# **Maximum Cross-polarisation**



# **Maximum Cross-polarisation**



#### **Tipping Curves**



#### Conclusions



- Presented the process to derive the reflector geometry for SKA
- Currently starting



Artist's impression of SKA dishes (Credits: http://www.ska.ac.za)

