THE MITRA FRONT-END

Jaisridevi Shibchurn Girish Kumar Beeharry

Mauritius Radio Telescope Department of Physics Faculty of Science University of Mauritius

AIMS of my Bsc(Hons) Physics research project

Design a front-end system for the MITRA in the frequency range 200MHz to 800MHz

Construct sixteen dual polarised log periodic dipole antennas forming an array of eight antenna in North-South direction placed in East and eight antennas in North-south direction placed in West.

Outline of the talk

- Dual Polarised Log periodic Antenna
 Simulation
- -Earlier work (Prayag 2011)
- Antenna design & construction
- Front end electronics
- Array design & construction
- Observations
- MRT3 in CALLISTO network
- Future work

LPA definition

LPA: choice of $\tau \& \sigma$

LPA: Version 1

Bras d'Eau 11.04.2011

Durban 27.07.2011

6

A schematic of the whole front-end and back-end system

Construction of the LPDA

Certain parameters were known:

 \succ The length of the transmission line which is 2.375 m long.

> The length of the dipole elements and spacing between them.

Length of elements	Resonant Frequency						
(mm)	(GHz)						
100 (shortest element)	3.000						
111	2.702						
121	2.479						
133	2.256						
146	2.055						
160	1.875						
182	1.648						
195	1.538						
217	1.382						
240	1.250						
265	1.132						
295	1.017						
330	0.909						
363	0.826						
460 (longest element)	0.652						

The LPDA MODEL

From these parameters: $rac{}{}^{}\tau = 0.905$ $rac{}{}^{}\sigma = 0.292$ $rac{}{}^{}\cot \alpha = 4\sigma/(1-\tau)$ $\alpha = 4.6^{\circ}$ Schematic of the spacers

Spacer 1(on tip of the booms):

Figure 4.4: Spacer 1

MAKING OF THE SPACER

Cutting of booms

Boom marking

Spacings	D1	D ₂	D ₃	D ₄	Ds	D ₆	D ₇	D ₈	D9	D ₁₀	D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁₅	D ₁₆
(mm)	15	57	64	72	81	91	102	115	129	145	163	183	206	231	260	460

Boom piercing

Cutting of elements

15

Grinding of elements

Assembling the booms and the elements to the booms

Welding

The front-end electronics

Coaxial cable measurements Connection of three part BNC connectors with RG58 coaxial cable

Wiring the booms

Connections of pre-filter amplifiers

Ground preparation and land marking for the array

A DE LA DE L

Clearing of forested piece of land Finding magnetic pole and geocentric pole.

Leveling and mounting of the array at the MRT

Ground preparation and land marking for the array

The same array configuration of the array would be built at the DUT on the university roof.

Array synthesis

Array in the North-South direction

$$\begin{split} \Psi &= (2\pi d/\lambda) \sin \alpha \\ \text{A0} &= \text{E0} + \text{E0exp}(\text{-}i\Psi) + \text{E0exp}(\text{-}2i\Psi) + \text{E0exp}(\text{-}3i\Psi) + \text{E0exp}(\text{-}4i\Psi) + \dots \\ &= \text{E0exp}(\text{-}7i\Psi) \\ \text{A0} &= \text{E0} \left(1 - \exp(\text{-}7i\Psi)\right) / \left(1 - \exp(\text{-}i\Psi)\right) \\ &= \left[\text{E0} \sin \left(7\Psi/2\right) / \sin \left(\Psi/2\right)\right] \cdot \exp \left(\text{-}7i\Psi/2\right), \end{split}$$

A0 = E0 sin $(7\Psi/2)$ / sin $(\Psi/2)$ Amplitude of the East and west array (ARRAY

FACTOR

Array in the East-West direction

 $\delta = (2\pi D/\lambda) \sin \Theta$ Total array East-West = A0 + A0exp(-i\delta) = A0 (1+exp(-i\delta)) = A0 exp(-i\delta/2) (exp(i\delta/2) + exp(-i\delta/2))

= 2 Ao . exp(-i $\delta/2$) . cos ($\delta/2$)

= 2 Ao . cos (δ/2)

Total amplitude of whole array configuration;

A = Array factor × Total array East-West

 $= Ao \times 2 Ao . \cos (\delta/2)$ = 2 Ao2 . cos ($\delta/2$) = 2 . [Eo sin (7 $\Psi/2$) / sin ($\Psi/2$)]2 . cos ($\delta/2$) = 2Eo2 . [sin2 (7 $\Psi/2$) / sin2 ($\Psi/2$)] . [cos ($\delta/2$)]

Thus, Intensity (I) = Amplitude2(A2) I = 4 E04 . [sin4(7Ψ/2) / sin4 (Ψ/2)] . [cos2 (δ/2)]

Tests and results

Testing connections of BNC with coaxial cables

• Testing of pre-filter amplifiers

Graph of gain(dB) against frequency(MHz)

Gain 16

Tests and results

• Testing loss in 50 m coaxial cable of type RG 213U

VSWR test of the LPDA

Meas Stop ExtRef Ready Svc 2013-07-03 10:40

Simulated plots of the LPDA in E-plane at 200MHz-800MHz by DUT

Horizontal plane

15

345

330

-17 < dBi < 7.56

Max gain Phi:0

Simulated plots of the LPDA in H-plane at 200MHz-800MHz by DUT

Vertical plane

190 XY

105

120

35

-999 < dBi < 7.56

Max gain The:90

150

165

• Determining the Half Power Beam Width (HPBW) of Log Periodic Dipole Antenna

I.Near-field test

Normally we have four different combinations for the HPBW test as the antenna is dually polarised (EeEr, HeHr, EeHr, HeEr)

Tests and results

• Radiation pattern in near-field region at 200MHz.

Radiation pattern in Near-field region at 200 MHz after ninety degree rotation of both emitter and reciever.

Tests and results

• Combined plots in Near-field region for all plane combinations.

• Radiation pattern in far-field region at 200 MHz without using a pre-filter amplifier

Radiation pattern in far-field region using a pre-filter amplifier.

Combined polar plots in E-E plane and H-H plane of far-field region.

The measured HPBW of the antenna is approximately 120⁰

Tests and results

Testing of antenna response of all sixteen antennas in both E-plane and Hplane.

Tests and results

. Testing of antenna response of all sixteen antennas in both E-plane and H-plane.

• Antenna response of East array.

Antenna response of East array using a 200m optical cable.

Observations using optical cable

Observations using coaxial cable

Pictor A fringes at 144 MHz

The e-CALLISTO test

5th February solar flare

5th March solar flare

15th March solar flare

Conclusions

•Some of the bands to which most antennas could respond were: 151 MHz, 201-204 MHz, 554 MHz, 948.3 MHz, 1.236 GHz and 1.542 GHz.

•The front-end system satisfies the frequency range of MITRA.

•The antenna (MRT 3) has become a part of the International Network of Solar Radio spectrometers.

Future works

Observations would be done for different configurations of the array.
The array would consist of more such antennas for observations

I sincerely thank you for your kind attention.