EM Effects Control Using Topological Concepts

Dr. D. V. Giri and Dr. F. M. Tesche

Statement of the Problem

• The goal is the protection of complex electrical systems

Examples of Airborne Systems

Examples of Communication Systems

Examples of Transportation Systems

Electrical Power Systems

Statement of the Problem

- The issue is the protection of complex electrical systems
- against various types of electromagnetic (EM) threats
 - Lightning and electrostatic discharge (ESD)
 - Nuclear electromagnetic pulse (NEMP)
 - Microwave environments
 - Fast, short duration EM pulses

HPEM Threat Examples

NEMP

Fast and Short Pulses

Natural Lightning

Microwave Environments

Various Approaches are Possible

- Remain unaware of potential problems,
- Recognize the problem, but do nothing about it, or
- Study the problem and develop a solution

In this presentation, we will take the third approach

The Question – How to Protect Complex Systems?

Electrically complex systems usually consist of subsystems connected together by power and signal wires.

Electrically complex systems usually consist of sub-systems connected together by power and signal wires.

And frequently, attempts are made to organize this mess

Such wiring can pick-up external EM signals and distribute this energy throughout the system.

Sub-systems connected to the wiring can be affected with resulting upset or damage – if they are not protected.

The Question – How to Protect Complex Systems?

- Electrically complex systems usually consist of sub-systems connected together by power and signal wires.
 - And frequently, attempts are made to organize this mess.
- Such wiring can pick-up external EM signals and distribute this energy throughout the system.
- Sub-systems connected to the wiring can be affected with resulting upset or damage if they are not protected.

Pin-Hardening: A Possible Solution ?

- In pin-hardening, each conductor leading to a potentially susceptible piece of equipment is protected.
 - using a filter, surge protector, nonlinear device, etc.

EXAMPLE OF A MULTI-FLOOR COMPUTER INSTALLATION

Pin-Hardening: A Possible Solution ?

Pin Hardening approach is unfeasible for many systems due to:

- initial cost of hardening elements
 high installation cost
 added weight to the overall system
 too many hardness critical items (HCI)
- that require periodic surveillance
- □ serious hardness maintenance issues

No, not for complicated systems.

What is the Alternative ?

- Electromagnetic Shielding
 - First described by Benjamin Franklin in 1755 in a shielding experiment which showed that a probe inside a charged enclosure was not affected by an external charge.
 - Later investigated by Michael Faraday in 1836, whose name is now associated with the "Faraday cage"
 - Used by J. C. Maxwell in 1876 for the protection of munitions

Electromagnetic Topology

- The application of global shielding to complex electrical systems assisted by the concept of *Electromagnetic Topology*.
- EM Topology is the description of the shielding enclosure(s) surrounding potentially vulnerable equipment for the purpose of providing EM protection.
 - It involves a description of the size, shape and other properties of the enclosing shields,
 - the locations and properties of imperfections (both deliberate and unintentional) in the shield, and
 - a description of the signal propagation paths in and through the shields.

Electromagnetic Topology (con't.)

- To understand EM effects on a complex, shielded system, we can think of the system as having of several layers of conducting surfaces which shield the interior.
 - this is known as the "onion" concept of shielding (Ricketts, L. W., J. E. Bridges and J. Miletta, EMP Radiation and Protective Techniques, John Wiley and Sons, New York, 1976.)
- This idea was Defined by Baum , and later formalized BY Tesche and others in the literature:
 - C. E. Baum, "How to Think About EMP Interaction", Proceedings of the 1974 Spring FULMEN Meeting, Kirtland AFB, April 1974.
 - F. M. Tesche, et. al., "Internal Interaction Analysis: Topological Concepts and Needed Model Improvements", *Interaction Note Series*, IN-248, October 1975.
 - F. .M. Tesche, "Topological Concepts for Internal EMP Interaction", IEEE Trans. AP, Vol. AP-26, No. 1, January 1978.
 - C. E. Baum, "Electromagnetic Topology for the Analysis and Design of Complex Electromagnetic Systems", pp. 467-547 in Fast Electrical and Optical Measurements, Vol I, eds. I.E. Thompson and L.H. Luessen, Martinus Nijhoff, Dordrecht, 1986.

Use of EM Topological Concepts for Response Estimation

- The system is examined for the principal shields or EM "barriers",
- Imperfections (openings) in these barriers are noted and categorized,
- An EM signal flow diagram is constructed,
- Models are developed for the most important aspects of the EM signal paths, and
- An estimation of the equipment responses to the EM excitation are determined using a variety of methods.

Other Uses of EM Topology

- Assists in the design of new systems with EM hardening requirements,
- Provides guidance for EM hardness verification testing,
- Aids in the determination of hardness critical items (HCI),
- Provides a starting point for hardness surveillance and maintenance (HM/HS) programs, and
- Helps in configuration control of a system.

The First Step in Model Development Is to Determine the Topological Diagram

- This is a description of the principal shielding surfaces in the system and their interrelations to each other.
- Real shields are <u>not</u> perfect, and the external EM energy can enter by one or more of the following mechanisms: <u>Acronym CAD</u>
 - Conductive penetrations, formed by wires, cables or other conductors,
 - Aperture penetrations through holes in the shield, and
 - -Diffusion through the barrier material.

The Shielding Topology is Based on Conducting Surfaces

Consider an aircraft excited by a distant cloud-to-cloud lightning discharge

Physical configuration

System topology

The shielding surfaces do appear like the layers of an onion.

The Interaction Sequence Diagram (ISD) Is Based on the Shielding Topology

- It represents the paths that the external EM energy can take from the outside to the inside of the system.
- Basically, this is a *signal flow diagram* developed from knowledge of the topological diagram and the shield penetrations.

Overview of the Interaction Sequence Diagram (ISD)

• For an external EM source, the following interaction

sequence diagram results for the example aircraft:

From the ISD, a System EM Model Can Be Developed

- •This results from the removal of all of the unimportant "clutter" in the system.
- •This step in the analysis can require considerable judgment on the part of the analyst.
- Such models frequently use transmission line theory, but other simple EM models are also found: antenna theory, aperture models, etc.

A Circuit Model is Then Developed

- Once the system model is developed, it can be cast into an equivalent Thévenin or Norton circuit
 - Acting on a component or sub-system of interest that may be prone to upset or failure.
- In this manner, entire system interaction model is put into the form of a single equivalent circuit acting on a "victim".
- The elements of this circuit usually are not known analytically:
 - -they must be calculated using one or more approaches which provide numerical representations of the circuits

Summary of EM Interaction with Systems

Described as a process involving Propagation, Coupling, and Penetration

- Propagation:
 - EM energy moving from the external source to the system
 - EM energy moving within the system
- Coupling:
 - The induction of currents and charges on conductors by the EM fields
- Penetration:
 - Passage of EM energy through shielding enclosures
 - Leakage of apertures and seams
 - Unwanted signals passing through filters and/or surge limiters

Past Uses of EM Topology

- Study of HPM effects on an office building
- EMP hardening of a ground-based communication facility
- Design of EMP protection in a missile system
- Development of measurement program for EMP hardness surveillance in a C-130 aircraft
- EMP hardening study of the B-52 aircraft
- Study of EM effects on an automobile

Office Building

B - 52

Ground based Communication Facility

C -130

Missile system

Illustration of a Topological Model for a Car

• Ford Crown Victoria sedan.

Major Entry Points for EM Energy

Physical Details of the System

 Photos of the engine compartment, showing the locations of the computer, shielded cable, fuse box and other equipment.

HPEM Shielding Topology for the Vehicle

The ISD for the Hard-wired (Conductive) Signal Paths

The ISD for the Conductive and Aperture Signal Paths

Detailed ISD, Based of the Previous

EM Hardening Based on Topology

- The *fundamental principal* of EM hardening is to insist on a closed shield topology.
 - This is **not** a grounding, bonding, filtering, commonmode rejection or surge protection concept.
 - These latter techniques are **means** to control (or close) the shield topology.
- The basic topological hardening guideline is as follows:

Completely enclose the potentially susceptible equipment in an EM barrier, and provide suitable EM protection for all penetration points in the barrier.

Summary

- EM Topology provides a structured way of understanding the EM field interaction with complex systems.
- It is useful for
 - initial system design,
 - performing analysis of system responses,
 - developing an EM hardening philosophy and plan,
 - assisting in developing system test concepts, and
 - maintaining a configuration control plan, and
 - developing a hardness maintenance and surveillance plan.