IEEE Africon 2013/URSI

Port Louis – Mauritius

9-12 September 2013

An Overview of the MITRA Radio Telescope Signal Chain

Dominique Ingala Durban University of Technology

11 September 2013

Background and Specifications

- Project proposal: by Prof. Girish Beeharry
- Locations: UoM and DUT
- Operational frequency range: 200 800 MHz
- Antenna type: Dual Polarized LPDA
- 2 arrays (8 LPDA's per array)
- Front-End RF and IF stage: Analog components
- Digital Back-End: Software Defined Radio
- Fiber optic links
- Cost effective design

General Block Diagram

Antenna Design

- Type: Dual-polarized
 Log-Periodic Dipole Antenna (LPDA)
- Frequency band: 200-800 MHz
- Directivity: 8.5 dBi
- Scaling factor τ: 0.892
- Spacing factor σ : 0.165
- Element diameter: 6 mm
- Boom width: 15 mm

MITRA Antenna

1

DUT DURBAN UNIVERSITY OF TECHNOLOGY

Shorting bar

Infinite balun

LPF and LNA

Feed point

Antenna Testing

South African National Antenna Test Range (NATR)

- 3 parameters:
- VSWR
- Radiation pattern
- Directivity (Gain)

Source ant. (ETS-Lindgren 3142D)

Reference ant. (Schaffner CBL 6143 A)

VSWR Measurement

Simulated

Measured

Simulated

Measured (H-plane)

Measured (H-plane)

Simulated

DUT DURBAN UNIVERSITY OF TECHNOLOGY

Measured (H-plane)

Gain Measurement

MITRA Array

Gain and Noise Temperature

RF Combiner and Power Compartment

Front-End View

Digital Back-End

Digital Back-End Hardware

USRP 2 and SBX board

USRP 2 features:

- FPGA: Xilinx Spartan 3A-DSP
- ADC sample rate: 100 Msps
- ADC resolution 14 hits
- Gigabit Ethernet interface
- Bandwidth: 50 MHz (RX)
- MIMO capability (up to 8 antennas)
- 10 MHz ext. ref. clock
- 1 PPS
- Software: Gnu-Radio

SBX board features:

- Frequency range: 0.4 4.4 GHz
- Bandwidth: 40 MHz
- Transceiver: TX/RX Full duplex
- MIMO capability
- Phase coherence with LO

- $\cos(\omega \tau_q)$ called fringe function.
- The variation of the angle θ as the earth rotates generates quasi-sinusoidal fringes at the correlator.

 $V_{4(t)}$

Multiplying Correlator

Raw data and correlated signal

RFI test

WV: 200-800 MHz

EV: 200-800 MHz

Current status of the project

- Front-End completed
- Digital Back-End completed
- Ready to monitor RF signals in the control room
- Control room being set up
- Normalizing the level of the received signal

Immediate Future Activities

- Phase coherence with the USRP local oscillators
- Attempting to detect astronomical sources such as Sun, Sagittarius A, Centaurus A, Vela X.

Long Term Aims

- Attempting to correlate signals from astronomical sources
- Signal and data processing
- Attempting to implement VLBI between UoM and DUT

Thank you very much

Merci beaucoup

