EUROPEAN

VLBI science in the EVN now and in the future

Michael Lindqvist Onsala Space Observatory, Sweden

> **Arpad Szomoru** JIVE, The Netherlands

Outline

Description of the EVN

Science with the EVN

Summary

Description of the EVN

- The European VLBI Network (EVN) was formed in 1980
 - MPIfR (Germany), IRA (Italy), ASTRON (The Netherlands), OSO (Sweden), JBO (UK)
- Today it includes 15 major institutes, including the Joint Institute for VLBI in Europe (JIVE)
 - The primary mission of JIVE is to operate and further develop the EVN correlator. JIVE is also involved in supporting EVN users and operations of EVN as a facility
- EVN has no central funding.
 - Institutes contribute to the operation of JIVE

Description of the EVN

- The overall policy of the EVN is set by the EVN Consortium Board of Directors (CBD)
- Technical aspects of EVN operations are considered by the Technical and Operations Group (TOG)
- The EVN is an open facility and encourages proposals from the entire astronomical community
- Proposals are submitted to the EVN Programme Committee (EVN PC) 3 times/year

The EVN PC

The EVN PC

Description of the EVN

- The EVN observes during:
 - 3 EVN sessions (3x3 weeks)
 - 10 e-VLBI sessions (10x24 hours)
 - Target of Opportunity
 - Out of Session
- The scheduling is done by the EVN Scheduler
- The VLBI friends performs the observations

Description of the EVN

Planetary science

Huygens/Titan

Gurvits et al.

JUICE-PRIDE/Jupiter

Gurvits et al.

Stellar evolution

High mass star formation

Bartkiewicz et al. 2012

- The EVN has pioneered the high resolution study of Galactic methanol masers utilising its sensitivity, wide-field imaging polarisation capability, and astrometric accuracy
- This allows detailed modelling of the rotating disk of methanol masers around the highmass protostar
 - a) Spitzer GLIMPse image + 22 H₂O maser
 - b) Distribution of 6.7 GHz methanol masers (open circles, coloured by velocity)
 22 GHz H₂O masers (EVN closed squares, VLA open squares)
 - c) Zoomed areas showing details of water maser positions

Distribution of methanol masers

Many sources could be observed with the AVN!

Structure of the Milky Way

EUROPEAN

The dwarf nova SS Cygni

J. Miller-Jones et al. 2013

- SS Cygni a challenge to our understanding of accretion disc theory?
- VLBI data places SS Cygni substantially closer, 114 pc, than HST data, 159 pc
- This reconciles the source behaviour with our understanding of accretion disc theory in accreting compact objects

e-VLBI - rapid turn-around

- e-VLBI has made rapid turn-around possible
 - X-ray, γ-ray binaries in flaring states (including novae)
 - AGN γ-ray outbursts locus of VHE emission
 - Other high-energy flaring (e.g., Crab)
 - Outbursts in Mira variables (spectralline)
 - Just-exploded GRBs, SNe
 - Binaries (incl. novae, XRBs) at specific orbital/outburst phases
- EXPReS/NEXPReS (EC-projects)
- New exciting science!

e-VLBI - rapid turn-around

- e-FVN observations on two successive days of the neutron-star X-ray binary Cyg X-2.
- The cross in both panels is the position of the peak flux of the first day image, showing that a jet has been launched, probably related to a mini-flare on the first day.
- The combination of EVN and X-ray data during this event helps constrain theoretical models of processes in the neutron-star/ accretion-disk environment.

EUROPEAN

Supernova 1993J in M81

N. Bartel et al., J.M. Marcaide et al.,

- SN 1993J is a textbook example where one can trace the physical and structural evolution of an supernova, an exploding star
- From 1993 it has been the subject of intense studies

The X-ray millisecond pulsar PSR J0218+4232

D. Chen et al. 2013

- The EVN software correlator at JIVE (SFXC) provides features that were never available on the MkIV, such as pulsar gating/binning
- VLBI astrometry of pulsars can yield the positions, proper-motions, and trigonometric parallaxes of the pulsars
- It has been suggested that X-ray ms pulsars are natural navigation beacons for deep-space satellites carrying small X-ray detectors!

Multi-epoch EVN observations of Arp299-A

M.A. Pérez-Torres et al. 2010 M. Bondi et al. 2012

- Arp299-A is a luminous infrared galaxy at a distance of 45 Mpc
- The galaxy has been monitored with the EVN
- 26 compact sources (8 new) are detected in a region of about, 150 x 110 pc
- The data is consistent with them being a mixed population of core-collapse SNe and supernova remnants (SNR).
- They also conclude that A1 is the long-sought AGN in Arp 299-A.

The search for dual SMBH

S. Frey et al., 2012

M. Bondi et al., 2010

- Most major galaxies harbour supermassive black holes (SMBHs) in their centre.
- Hierarchical structure formation models involve interactions and mergers in which the host galaxies and their central SMBHs grow together
- In this scenario, one may expect to see some dual SMBH systems as the snapshots of the corresponding evolutionary phases of the merger process

Starburts or AGN in faint sources at high redshift?

S. Chi et al., 2013

- The aim of the project is to determine the nature of the faint radio source population in the Hubble deep field north and its flanking fields
- Separate faint AGN and starburst galaxies
- Around 25% of star-forming galaxies of various types harbour faint AGN
- EVN can do even better now
 - sensitivity and multiple phase centres

What do the user want?

Average rank	In which direction should the EVN develop?
2.73	Improved uv-coverage (more telescopes, more short spacings)
3.50	Increased bandwidth to improve sensitivity
4.57	Improved calibration in general (phase, amplitude, bandpass, polarization)
4.60	Improved resolution (more long baselines)
4.73	Frequency agility for spectral index imaging
6.06	Real-time e-VLBI capabilities for more telescopes
6.34	Extended observing time to be able to carry out big surveys
6.42	Real-time e-VLBI capabilities for a larger fraction of observing time
6.71	Improved astrometry
6.89	Larger field of view

Enhancing EVN capabilities

- Observations at 4 Gbps (and beyond)
- New telescopes and collaborations (SRT, AVN, KVN, China)
- High speed connectivity to, KVAZAR, China, ...
- Better frequency agility
- Improve flexibility (transients, ToO)
- eMERLIN+EVN at 1 Gbps
- Sub-arrays, more observing time with smaller telescopes
- Next generation correlators, new possibilities

Summary

- EVN is producing excellent science
- EVN will complement the SKA
- Participate in VLBI-meetings
 - EVN symposia, EVN TOG-meetings, Interferometry schools, IVS TOW-meetings, VLBI Technical Workshops
- Looking forward to a scientific and technical collaboration with AVN!

